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1 Overview

The concept of molecular chaos dates back to Boltzmann [3], who derived
the fundamental equation of the kinetic theory of gases under the hypothesis
that the molecules of a nonequilibrium gas are in a state of “molecular dis-
order.” The concept of propagation of molecular chaos is due to Kac [8, 9],
who called it “propagation of the Boltzmann property” and used it to de-
rive the homogeneous Boltzmann equation in the infinite-particle limit of
certain Markovian gas models (see also [5, 17]). McKean [12, 13] proved the
propagation of chaos for systems of interacting diffusions that yield diffusive
Vlasov equations in the mean-field limit. Spohn [16] used a quantum analog
of the propagation of chaos to derive time-dependent Hartree equations for
mean-field Hamiltonians, and his work was extended in [1] to open quantum
mean-field systems.

This article examines the relationship between classical and quantum
propagation of chaos. The rest of this introduction reviews some ideas of
quantum probability and dynamics. Section 2 discusses the classical and
quantum concepts of propagation of chaos. In Section 3, classical propa-
gation of chaos is shown to occur when quantum systems that propagate
quantum molecular chaos are suitably prepared, allowed to evolve without
interference, and then observed. Our main result is Corollary 3.7, which may
be paraphrased as follows:

Let O be a complete observable of a single particle, taking its values in a
countable set J , and letOi denote the observableO of particle i in a system of
n distinguishable particles of the same species. Suppose we allow that quan-
tum n-particle system to evolve freely, except that we periodically measure
O1,O2, . . . ,On. The resulting time series of measurements is a Markov chain
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in Jn. If the sequence of n-particle dynamics propagates quantum molecu-
lar chaos, then these derived Markov chains propagate chaos in the classical
sense.

Results like this may be of interest to probabilists who already know
some examples of the propagation of chaos and who may be surprised to
learn of novel examples arising in quantum dynamics. An effort has been
made here to expound the propagation of quantum molecular chaos for such
an audience, while the classical propagation of chaos per se is discussed only
briefly in Section 2.1. The reader is referred to [18] and [14] for two definitive
surveys of the classical propagation of chaos.

1.1 Quantum kinematics

In quantum theory, the state of a physical system is inherently statistical:
the state of a system S does not determine whether or not S has a given
property, but rather, the state provides only the probability that S would
be found to have that property, if we were to check for it. The properties
that S might or might not have are represented by orthogonal projectors on
some Hilbert space. If a projector P represents a property P of S, then the
complementary property NOT P is represented by I − P . The identity and
zero operators I and 0 represent the trivial properties TRUE and FALSE
respectively. If P and Q are properties whose orthogonal projectors are P
and Q, the properties (P AND Q) and (P OR Q) are defined if and only
if P and Q commute, in which case PQ = QP represents (P AND Q) and
P + Q− PQ represents (P OR Q). A countable resolution of the identity is
a countable family of projectors {Pj} such that

PjPj′ = Pj′Pj = 0 ; ∀j 6= j′

and I =
∑

j Pj. This represents a partition of the space of outcomes of
a measurement on S into a countable set of elemental properties, which are
mutually exclusive and collectively exhaustive. A state ω of the system S is a
function that assigns probabilities to the properties of S, or their projections.
Thus we suppose that ω(I) = 1, ω(0) = 0 and also that

ω(I − P ) + ω(P ) = ω(I) = 1.

Indeed, it is rational to suppose that any state ω must satisfy

1 = ω(I) = ω
( ∑

j

Pj

)
=

∑
j

ω(Pj) (1)
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for any countable resolution of the identity {Pj}.
Having made these introductory comments, we revert to a more technical

description of the mathematical set-up. Suppose the properties of a quantum
system S are represented by orthogonal projectors in B(H), the bounded
operators on a Hilbert space H. The statistical states (also called simply
states) of that quantum system are identified with the normal positive linear
functionals on B(H) that assign 1 to the identity operator. A positive linear
functional ω on B(H) is normal if∑

a∈A

ω(Pa) = 1

whenever {Pa}a∈A is a family of commuting projectors that sum to the iden-
tity operator (i.e., the net of finite partial sums of the projectors converges
in the weak operator topology to the identity). Normal states are in one-
one correspondence with density operators, positive trace-class operators of
trace 1. If D is a density operator on H then A 7→ Tr(DA) defines a nor-
mal state on B(H); conversely, every normal state ω on B(H) is of the form
ω(A) = Tr(DA) for some density operator D. The density operators form
a closed convex subset of the trace-class operators, which is a Banach space
with ‖T‖ = Tr(|T |). The dual of the Banach space of trace class operators
is B(H) with its operator norm.

In the Heisenberg picture of quantum dynamics — where the state is
constant while the operators corresponding to observables change — the dy-
namics are given by unitarily implemented automorphisms of the bounded
operators on a Hilbert space. That is, for each τ ≥ 0 there exists a uni-
tary operator U(τ) such that a property represented by P at time t = 0 is
represented by

P (τ) = U(τ)∗PU(τ) (2)

at time t = τ . In the Schrödinger picture of dynamics, the density operator
D of the quantum state changes in time while the projectors P that represent
properties of the system remain fixed. The Schrödinger formulation of the
dynamics corresponding to (2) is

D(τ) = U(τ)D(0)U(τ)∗,

because, for any P ∈ B(H),

Tr[DP (τ)] = Tr[D U(τ)∗PU(τ)] = Tr[U(τ)DU(τ)∗P ] = Tr[D(τ)P ].
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The Heisenberg picture of dynamics suggests a generalization where the dy-
namics A 7→ U∗AU are replaced by more general endomorphisms of B(H),
namely, by completely positive maps φ : B(H) −→ B(H) such that φ(I) = I.
These endomorphisms include the automorphisms A 7→ U∗AU of the Heisen-
berg picture of quantum dynamics, but also describe maps of observables
A 7→ φ(A) effected by the intervention of measurements, randomization, and
coupling to other systems. A map φ is positive if it maps nonnegative op-
erators to nonnegative operators, and it is completely positive if φ ⊗ idd is
positive whenever idd is the identity on B(Cd) for any finite d. Requiring φ to
be positive and unital (unit preserving) is necessary to ensure that (1) holds,
at least for any finite resolution of the identity. The complete positivity of
φ ensures the positivity of the dynamics of certain extensions of the origi-
nal system S, where S is considered together with a physically independent,
finite-dimensional quantum system. To pass to the Schrödinger picture we
must impose the further technical requirement that the map φ be normal,
i.e., φ is assumed to be such that

lim φ(Aα) = φ(A)

whenever {Aα} is a monotone increasing net of positive operators with least
upper bound A. This way the Schrödinger dynamics of the normal state can
be defined as the “predual” of the Heisenberg dynamics; if φ is normal then
the relation

Tr(φ∗(D)A) = Tr(Dφ(A)) ∀A ∈ B(H)

implicitly defines a trace-preserving map φ∗ known as the predual of φ. In the
Schrödinger picture, the density operator D that describes the quantum state
undergoes the transformation D 7→ φ∗(D), where φ is a normal completely
positive unital endomorphism of B(H).

The description of a quantum system evolving continuously in time re-
quires a normal and completely positive endomorphism of B(H) for each
t > 0, to describe the change of observables (in the Heisenberg picture) from
time 0 to time t. A quantum dynamical semigroup, or QDS, is a family {φt}t≥0

of normal completely positive (and unital) endomorphisms of the bounded
operators on some Hilbert space H, which is a semigroup (i.e., φ0 = id and
φt ◦ φs = φt+s for s, t ≥ 0) and which has weak*-continuous trajectories: for
any B ∈ B(H) and any trace class operator T

Tr(T φt(B))



Propagation of Chaos in Classical and Quantum Kinetics 5

is continuous in t. (We will not need the continuity of trajectories in this
article.) Quantum dynamical semigroups describe the continuous change of
the state of an open quantum system whose dynamics are autonomous and
Markovian. Many models of open quantum systems are QDSs (but not all,
viz. [10]). We will use the notation (φ)t for the whole QDS:

(φ)t = {φt}t≥0. (3)

2 Classical and Quantum Molecular Chaos

2.1 Classical molecular chaos

Molecular chaos is a type of stochastic independence of particles manifesting
itself in an infinite-particle limit.

Let Ωn be the n-fold Cartesian power of a measurable space Ω. A prob-
ability measure p on Ωn is called symmetric if

p(E1 × E2 × · · · × En) = p(Eπ(1) × Eπ(2) × · · · × Eπ(n))

for all measurable sets E1, . . . , En ⊂ Ω and all permutations π of {1, 2, . . . , n}.
For k ≤ n, the k-marginal of p, denoted p(k), is the probability measure on
Sk satisfying

p(k)(E1 × E2 × · · · × Ek) = p(E1 × · · · × Ek × Ω× · · · × Ω)

for all measurable sets E1, . . . , Ek ⊂ Ω. In the context of classical probability
theory, one defines molecular chaos as follows [18]:

Definition 2.1. Let Ω be a separable metric space. Let p be a probability
measure on Ω, and for each n ∈ N, let pn be a symmetric probability measure
on Ωn.

The sequence {pn} is p-chaotic if the k-marginals p
(k)
n converge weakly

to p⊗k as n −→∞, for each fixed k ∈ N.

A sequence, indexed by n, of n-particle dynamics propagates chaos if
molecularly chaotic sequences of initial distributions remain molecularly chaotic
for all time under the n-particle dynamical evolutions. In the classical con-
texts [9, 12, 14, 18] the dynamics are Markovian and the state spaces are
usually taken to be separable and metrizable. Accordingly, in my disserta-
tion [4] I defined propagation of chaos in terms of Markov transition kernels,
as follows:
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Definition 2.2 (Classical Propagation of Chaos). Let Ω be a separable
metric space. For each n ∈ N, let Kn : Ωn × σ(Ωn) −→ [0, 1] be a Markov
transition kernel which is invariant under permutations in the sense that

Kn(x, E) = Kn(π · x, π · E)

for all permutations π of the n coordinates of x and the points of E ⊂ Ωn.
Here, σ(Ωn) denotes the Borel σ-field of Ωn.

The sequence {Kn}∞n=1 propagates chaos if the molecular chaos of a
sequence {pn} entails the molecular chaos of the sequence{∫

Ωn

Kn(x, ·)pn(dx)

}∞

n=1

. (4)

The preceding formulation of the propagation of molecular chaos is tech-
nically straightforward but not flexible enough to cover the weaker kinds of
propagation of chaos phenomena that occur in several applications, most no-
tably in the landmark derivation of the Boltzmann equation due to Lanford
and King [11]. Nonetheless, it is still worthwhile to make Definition 2.2.
Those models that exhibit weak propagation of chaos phenomena usually
have less realistic regularizations that propagate molecular chaos in the sense
of Definition 2.2. Moreover, this definition has the pleasant feature that it
implies that {Kn ◦Ln} propagates molecular chaos when {Kn} and {Ln} do.

2.2 Quantum molecular chaos

The Hilbert space of pure states of a collection of n distinguishable compo-
nents is H1 ⊗ · · · ⊗Hn, where Hi is the Hilbert space for the ith component.
The Hilbert space for n distinguishable components of the same species will
be denoted H⊗n. If Dn is a density operator on H⊗n, then its k-marginal, or
partial trace, is a density operator on H⊗k that gives the statistical state of
the first k particles. The k-marginal may be denoted Tr(n−k)Dn and defined
as follows: Let O be any orthonormal basis of H. If x ∈ H⊗k with k < n
then for any w, x ∈ H⊗k〈

Tr(n−k)Dn(w), x
〉

=

∑
y1,...,yn−k∈O

〈Dn(w ⊗ y1 ⊗ · · · ⊗ yn−k), x⊗ y1 ⊗ · · · ⊗ yn−k〉 .
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A linear functional ω on B(H⊗n) is symmetric if it satisfies

ω(A1 ⊗ · · · ⊗ An) = ω(Aπ(1) ⊗ Aπ(2) ⊗ · · · ⊗ Aπ(n))

for all permutations π of {1, 2, . . . , n} and all A1, . . . , An ∈ B(H). For each
permutation π of {1, 2, . . . , n}, define the unitary operator Uπ on H⊗n whose
action on simple tensors is

Uπ(x1 ⊗ x2 ⊗ · · · ⊗ xn) = xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(n). (5)

A density operator Dn represents a symmetric functional on B(H⊗n) if and
only Dn commutes with each Uπ. Two special types of symmetric density op-
erators are Fermi-Dirac densities, which represent the statistical states of sys-
tems of fermions, and Bose-Einstein densities, which represent the statistical
states of systems of bosons. Bose-Einstein density operators are characterized
by the condition that DnUπ = Dn for all permutations π, and Fermi-Dirac
densities are characterized by the condition that DnUπ = sign(π)Dn for all
π.

To recapitulate, n-component states are given by density operators on
H⊗n and, in the Schödinger picture, the dynamics transforms an initial state
A 7→ Tr(DA) into a state of the form A 7→ Tr(Dφ(A)), where φ is a normal
completely positive unital endomorphism of B(H⊗n). This is the context of
the following two definitions:

Definition 2.3. Let D be a density operator on H, and for each n ∈ N, let
Dn be a symmetric density operator on H⊗n.

The sequence {Dn} is D-chaotic in the quantum sense if, for each
fixed k ∈ N, the density operators Tr(n−k)Dn converge in trace norm to D⊗k

as n −→∞.
The sequence {Dn} is quantum molecularly chaotic if it is D-chaotic

in the quantum sense for some density operator D on H.

The definitions of classical and quantum molecular chaos are somewhat
incongruous. This definition of quantum molecular chaos requires that the
marginals converge in the trace norm, whereas the notion of classical molec-
ular chaos used in Probability Theory requires weak convergence of the
marginals. In fact, Definition 2.1 of classical molecular chaos and the “com-
mutative” version of Definition 2.3 (obtained by extending that definition of
quantum molecular chaos to commutative von Neumann algebras) are not
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equivalent! Nonetheless, I have chosen Definition 2.3 because the attrac-
tive theory of quantum mean-field kinetics presented in Section 2.3 favors a
formulation of quantum molecular chaos in terms of the trace norm.

Definition 2.4 (Propagation of Quantum Molecular Chaos). For each
n ∈ N, let φn be a normal completely positive map from H⊗n to itself that
fixes the identity and which commutes with permutations, i.e., such that

φn(U∗
πAUπ) = U∗

πφn(A)Uπ (6)

for all A ∈ B(H⊗n) and all permutations π of {1, 2, . . . , n}, where Uπ is as
defined in (5).

The sequence {φn} propagates quantum molecular chaos if the quan-
tum molecular chaos of a sequence of density operators {Dn} entails the
quantum molecular chaos of the sequence {φn∗(Dn)}.

We shall soon find that there are interesting examples of quantum dy-
namical semigroups (φn)t with the collective property that {φn,t} propagates
quantum molecular chaos for each fixed t > 0. When this happens, it is
convenient to say that the sequence {(φn)t} of QDSs propagates chaos.

Definition 2.5. For each n let (φn)t be a QDS on B(H⊗n) that satisfies the
permutation condition (6). The sequence {(φn)t} propagates molecular
chaos if {φn,t} propagates quantum molecular chaos for every fixed t > 0.

2.3 Spohn’s quantum mean-field dynamics

There are several successful mathematical treatments of quantum mean-field
dynamics. One of them, due to H. Spohn, relies upon the concept of propaga-
tion of quantum molecular chaos. Spohn’s theorem [16] constitutes a rigorous
derivation of the time-dependent Hartree equation for bounded mean-field
potentials.

Let V be a bounded Hermitian operator on H ⊗ H such that V U(12) =
U(12)V (y⊗ x), representing a symmetric two-body potential. Let V1,2 denote
the operator on H⊗n defined by

V1,2(x1 ⊗ x2 ⊗ · · · ⊗ xn) = V (x1 ⊗ x2)⊗ x3 ⊗ · · · ⊗ xn, (7)

and for each i, j ≤ n with i < j, define Vij similarly, so that it acts on the ith

and jth factors of each simple tensor. This may be accomplished by setting
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Vij = U∗
πV1,2Uπ, where π = (2j)(1i) is a permutation that puts i in the first

place and j in the second place, and Uπ is as defined in (5). Define the n-
particle Hamiltonians Hn as the sum of the pair potentials Vij, with common
coupling constant 1/n:

Hn =
1

n

∑
i<j

Vij. (8)

If Dn is a state on H⊗n, let Dn(t) denote the state of an n-particle system
that was initially in state Dn and which has undergone t units of the temporal
evolution governed by the Hamiltonian (8):

Dn(t) = e−iHnt/~Dne
iHnt/~. (9)

Theorem 2.6 (Spohn). Suppose D is a density operator on H and {Dn}
is a D-chaotic sequence of symmetric density operators on H⊗n. Then the
sequence of density operators {Dn(t)} defined in (8) and (9) is D(t)-chaotic,
where D(t) is the solution at time t of the following initial-value problem in
the Banach space of trace-class operators:

d

dt
D(t) = − i

~
Tr(n−1)[V, D(t)⊗D(t)]

D(0) = D. (10)

In other words, if Hn is as in (8) and φn(A) = eiHnt/~ A e−iHnt/~ then
the sequence {φn} propagates quantum molecular chaos. See [16] for a short
proof.

It must be emphasized that the preceding approach does not apply to
systems of Fermions. In other words, Theorem 2.6 yields time-dependent
Hartree equations but not time-dependent Hartree-Fock equations (which
include an exchange term that enforces the Pauli Principle). The problem is
that there exists no molecularly chaotic sequence of Fermi-Dirac states be-
cause the antisymmetry of Fermi-Dirac states is incompatible with the factor-
ization of molecularly chaotic states. To derive time-dependent Hartree-Fock
equations despite this problem is a goal of current research [15].

Spohn’s approach can be generalized to handle Hamiltonians which in-
volve the usual unbounded kinetic energy operators, and to handle open quan-
tum mean-field systems. In [1], Theorem 2.6 is extended to systems where
the free motion of the single particle may have an unbounded self-adjoint
generator and the two-particle generator may have the Lindblad form. The
“propagation of quantum molecular chaos” is called the “mean-field prop-
erty” in that article.
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3 Classical Manifestations of the Propagation

of Quantum Molecular Chaos

A sequence {φn} that propagates quantum molecular chaos mediates a vari-
ety of instances of the propagation of classical molecular chaos.

Given a D-chaotic sequence of density operators {Dn} one can produce
a variety of molecularly chaotic sequences {qn} of probability measures. For
each single-particle measurementM, the joint probabilities qn of the outcome
of applying M to all of the particles form a molecularly chaotic sequence.
Conversely, there are ways to convert a p-chaotic sequence {pn} of probabil-
ity measures into a D-chaotic sequence of density operators {Dn}. Suppose
we are presented with a sequence of quantum dynamics {φn} that propa-
gates quantum molecular chaos. We can first encode a sequence of molecu-
larly chaotic probabilities {pn} as a quantum molecularly chaotic sequence
of density operators {Dn}, then allow {Dn} to develop into a new sequence
{φn∗(Dn)} under the dynamics, and finally read the resulting quantum states
by applying some single-particle measurement to each of the particles. This
procedure converts one molecularly-chaotic sequence of probability measures
into another, i.e., it propagates chaos in the classical sense.

The next three sections examine the encode/develop/read-procedure that
converts quantum molecular chaos to classical molecular chaos. Finally, in
Section 3.4, we show how to produce Markov chains that propagate chaos by
observing quantum processes that propagate chaos.

3.1 Generalized measurements and the reading proce-
dure

Let H be a Hilbert space and (Ω,F) a measurable space. A positive operator
valued measure, or POVM, is a function X(E) from F to the positive op-
erators on H which is countably additive with respect to the weak operator
topology:

∞∑
i=1

X(Ei) = X(E)

in the weak operator topology whenever the sets Ei ∈ F are disjoint and
E = ∪Ei. In the special case that the positive operators X(E) are self-
adjoint projections such that X(E)X(F ) = 0 when E ∩ F = ∅, the POVM
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is just a resolution of identity on (Ω,F). A POVM defines an affine map
D 7→ pD,X from density operators on H to probability measures on Ω. For
any density operator D,

pD,X(·) = Tr [DX(·)] (11)

is a countably additive probability measure on (Ω,F).
POVMs correspond to generalized Ω-valued measurements just as the

spectral decomposition of a self-adjoint operator corresponds to a simple
measurement. A generalized measurement is realized by performing a simple
measurement on a composite system consisting of the system of interest an
“ancilliary system” that has been prepared to have state E, without allowing
any interaction between the system itself and the ancilliary system or the
environment. Suppose that Ha is the Hilbert space of an ancilliary space
that has been prepared in state E, and P (dω), ω ∈ Ω is the spectral measure
belonging to an observable O on the composite system H⊗Ha. If the system
of interest is in state D when O is measured, a random ω ∈ Ω is produced,
governed by the probability law Tr[(D⊗E) P (dω)]. This probability law has
the form (11), since

Tr[(D ⊗ E) P (dω)] = Tr[D Tr(1)((I ⊗ E)P (dω))] = Tr(DX(dω))

where X(dω) is the POVM

X(dω) = Tr(1)((I ⊗ E1/2)P (dω)(I ⊗ E1/2)).

This shows that the outcome of a generalized measurement is governed by
some POVM as in (11). Conversely, it can be shown that any POVM arises
in this way from some conceivable (but perhaps impracticable) generalized
measurement of the type we have just described [7].

The following lemma has a straightforward proof, which we omit.

Lemma 3.1. Let Ω be a separable metric space with Borel σ-field σ(Ω), and
let X : σ(Ω) −→ B(H) be a POVM on Ω.

For each n, let Dn be a symmetric density operator on B(H⊗n), and sup-
pose that {Dn} is D-chaotic in the quantum sense.

Then the sequence of probability measures {pn} is p-chaotic, pn and p
being defined by

p(A) = Tr(DA)

pn(A1 × A2 × · · · × An) = Tr (Dn X(A1)⊗ · · · ⊗X(An)) .
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3.2 Lemmas concerning the encoding procedure

The procedure for encoding probability measures as density operators de-
pends on our choice of a density operator valued function D(ω) on the single-
particle space Ω, now assumed to be a separable metric space. Let us choose
a function D(ω) from Ω to the density operators on a Hilbert space H, and
assume D is continuous for technical convenience. Then we can convert a
probability measure pn on Ωn into the density operator∫

Ωn

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωn) pn(dω1dω2 · · · dωn)

on H⊗n. If {pn} is a p-chaotic sequence of symmetric measures on Ωn then the
corresponding sequence of density operators is quantum molecularly chaotic
— but only in a weak sense! Think of the density operators as a subset of
the Banach space of trace-class operators. Each continuous linear functional
on this space has the form

T 7−→ Tr(TB)

where B is a bounded operator, for B(H) is the Banach dual of the space of
trace-class operators on H. A sequence {Tn} of trace-class operators on H is
weakly convergent if

lim
n→∞

Tr(TnB) = Tr(TB)

for all B ∈ B(H).

Lemma 3.2. Let Ω be a separable metric space and suppose {pn} is a p-
chaotic sequence of symmetric measures on Ωn. Let D(s) be a continuous
function from Ω to the density operators on a Hilbert space H.

Define D̄ and Dn by

D̄ =

∫
Ω

D(ω)p(dω)

Dn =

∫
Ωn

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωn) pn(dω1dω2 · · · dωn).

(12)

Then, for each k, the sequence of marginals {Tr(n−k)Dn} converges weakly to
D̄⊗k as n −→∞.
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Proof. The integrals in (12) may be defined as Bochner integrals in the
Banach space of trace-class operators (see [6] Theorem 3.7.4). The partial
trace is a bounded operator from the Banach space of trace-class operators
on Hn to the Banach space of trace-class operators on Hk, so Theorem 3.7.12
of [6] implies that

Tr(n−k)

∫
Ωn

D(ω1)⊗ · · · ⊗D(ωn) pn(dω1dω2 · · · dωn)

=

∫
Ωn

D(ω1)⊗ · · · ⊗D(ωk) pn(dω1dω2 · · · dωn).

(13)

Since Bochner integration commutes with application of bounded linear func-
tionals, the right hand side of (13) converges weakly to∫

Ωk

D(ω1)⊗D(ω2)⊗ · · · ⊗D(ωk) p⊗k(dω1dω2 · · · dωk) = D̄⊗k

as n −→∞. �

The preceding lemma does not conclude that {Dn} is quantum molecu-
larly chaotic in the sense of our Definition 2.3, which requires convergence
of the partial traces in trace norm. Some additional conditions seem nec-
essary in order to conclude that the encoding procedure produces quantum
molecular chaos. The easiest thing to do is suppose that the quantum sys-
tems involved are finite dimensional. This affords a quick way to construct
Markov transitions on any space Ω. The opposite approach is to let the me-
diating quantum dynamics occur in any Hilbert space H but to suppose that
Ω is discrete. We follow these two approaches in the next two lemmas:

Lemma 3.3. If H is a finite dimensional Hilbert space Cd, and Dn and D
are as in the statement of Lemma 3.2, then the sequence of states {Dn} is
D̄-chaotic.

Proof. From Lemma 3.2 we know that {Tr(n−k)Dn} converges weakly to
D̄⊗k as n −→ ∞. But a sequence of trace-class operators on Cd converges
in trace norm if it converges weakly, since the Banach space of trace class
operators on on Cd is finite-dimensional. Hence, lim

n→∞
Tr(n−k)(Dn) = D̄⊗k in

trace norm, as required. �
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Now we consider a set J with a discrete topology and σ-field. We note
that if the word “separable” were removed from Definition 2.1 of classical
molecular chaos then the following lemma would hold even for uncountable
sets J :

Lemma 3.4. Let J be a countable set equipped with the discrete topology and
its Borel σ-field (so that every subset of J is measurable), and let {D(j)}j∈J

be a family of density operators on H indexed by J .
Suppose p is a probability measure on J and {pn} is a p-chaotic sequence

of probability measures. Define

D̄ =
∑
j∈J

p(j)D(j)

Dn =
∑

(j1,...,jn)∈Jn

pn(j1, . . . , jn)D(j1)⊗D(j2)⊗ · · · ⊗D(jn).

(14)

Then {Dn} is D-chaotic.

Proof. Since the series defining Dn converges in trace norm and the partial
trace operator Tr(n−k) is a bounded operator with respect to the trace norm,
it follows that

Tr(n−k)Dn =
∑
Jn

pn(j1, . . . , jn)D(j1)⊗D(j2)⊗ · · · ⊗D(jk)

=
∑
Jk

p(k)
n (j1, . . . , jk)D(j1)⊗D(j2)⊗ · · · ⊗D(jk).

Now {p(k)
n } converges weakly to p⊗k as n tends to infinity, for {pn} is p-

chaotic. Since a sequence of elements of `1 converges in norm if and only if
it converges weakly [2], the sequence {p(k)

n } converges in the `1 norm to p⊗k

as n tends to infinity. Hence, in trace norm,

lim
n→∞

Tr(n−k)Dn =
∑
Jk

p(j1)p(j2) · · · p(jk) D(j1)⊗D(j2)⊗ · · · ⊗D(jk)

= D̄⊗k,

proving that {Dn} is D̄-chaotic. �
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3.3 Putting it together: encoding, developing, and read-
ing

We now formulate two abstract propositions that follow from the above two
lemmas on the encoding procedure. Proposition 3.5 relies on Lemma 3.3 and
is therefore limited by the hypothesis that the mediating quantum system is
finite-dimensional. Proposition 3.6 is derived from Lemma 3.4. It allows the
quantum dynamics to take place in an arbitrary Hilbert space but requires the
measurable spaces involved to be discrete. Despite these technical restrictions
there remains a rich variety of classical examples of the propagation of chaos
residing within each instance of the propagation of quantum molecular chaos.

Proposition 3.5. Let Ω be a separable metric space with Borel σ-field σ(Ω),
let D(s) be a continuous function from Ω to the density operators on Cd, and
let X : σ(Ω) −→ B(Cd) be a POVM on Ω. For each n, let φn be a normal
completely positive unital endomorphism of B((Cd)⊗n) that satisfies (6).

Define the Markov transition kernel Kn on Ωn by

Kn((ω1, ω2, . . . , ωn), A1 × A2 × · · · × An)

= Tr [(D(ω1)⊗ · · · ⊗D(ωn)) φn(X(A1)⊗ · · · ⊗X(An))] .

If {φn} propagates quantum molecular chaos then {Kn} propagates molecular
chaos in the classical sense.

The proof of this proposition is omitted because it follows directly from
Lemma 3.1 and Lemma 3.3. Likewise, the following proposition follows from
Lemma 3.1 and Lemma 3.4:

Proposition 3.6. Let H be a Hilbert space and, for each n, let φn be a
completely positive endomorphism of B(H⊗n) that satisfies (6). Let J be a
countable set equipped with the discrete topology and σ-field, and let X :
J −→ B(H) be a POVM on J .

Define the Markov transition matrices Kn on Jn by

Kn((j1, . . . , jn), (j′1, . . . , j
′
n))

= Tr [(D(j1)⊗ · · · ⊗D(jn))φn(X(j′1)⊗ · · · ⊗X(j′n))]

If {φn} propagates quantum molecular chaos then the sequence of Markov
transition kernels {Kn} propagates classical molecular chaos.
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3.4 Periodic measurement of complete observables

The periodic measurement of a complete observable of a quantum system
produces a Markov chain of measurement values.

Let O be a complete observable of a system, represented by a resolution of
the identity {|ej〉〈ej|}j∈J for some orthonormal basis {ej}j∈J of H. Consider a
(possibly open) quantum system whose evolution is governed by a QDS (φ)t.
If the natural quantum evolution of this system is interrupted periodically by
the measurement of O, then the resulting random sequence of measurement
values is a Markov chain on J . To be specific, suppose the measurements of
O are performed at times 0, T, 2T, 3T, . . . but there is no other interference
with the evolution (φ)t. The first measurement of O results in a random
outcome, namely, the pure state

Pej
= |ej〉〈ej|

into which the system has collapsed. (We use Dirac notation |e〉〈e| for pro-
jection onto the span of e.) In effect, measuring the observable O prepares a
pure state Pej

and informs us of the index j ∈ J of that pure state. Having
been prepared in the state Pej

, the system is allowed to evolve T time units
under (φ)t. By time T , the state of the system is φT∗(Pej

). When O is mea-
sured at time T , the measurement produces another random j′ ∈ J , and the
system collapses into the corresponding pure state Pej′

. The probability of
the transition j → j′ is

Tr(φT∗(Pej
)Pej′

) = Tr(Pej
φT (Pej′

)) ≡ K(j, j′),

defining a Markov transition K(·, ·) from J to itself. At time T the system
has been prepared in some pure state Pej′

, and a new experiment begins:
the system undergoes T time units of the evolution (φ)t, transforming its
state from Pej′

to φT∗(Pej′
), and then O is measured at time 2T , instanta-

neously forcing the system into the random state indexed by j′′ with proba-
bility K(j′, j′′). This is repeated, producing a random record of the indices
j0, j1, j2, . . . of the pure states the system was in upon measurement at times
0, 1, 2, . . . of O. Ideally, these successive measurement/experiments would be
independent, both physically and stochastically, and it is evident that the
performance of those measurements in succession would produce a random
sequence j0, j1, j2, . . . governed by the (one-step) Markov transition kernel
K(·, ·).
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It will be convenient to denote by K[(φ)t,O, T ] the Markov transition
produced in this way, so that

K[(φ)t,O, T ](j, j′) = Tr(Pej
φT (Pej′

)). (15)

Imagine an n-component system whose (distinguishable) components are
each quantum systems with the (same) Hilbert space H, and which is gov-
erned by a QDS (φn)t that satisfies the permutation condition (6). Let {ej}
be an orthonormal basis for H indexed by J , and let O be the observable
that returns the value j if the (component) system is in the pure state ej.
The observable O determines a resolution of the identity {|ej〉〈ej|}. The
Hilbert space for the n-component system is H⊗n and the state of the system
is a density operator on H⊗n. Let Oi denote the observable that returns the
value j if the ith component in the pure state ej. We can imagine measuring
Oi of each of the components because the components are distinguishable.
Simultaneous measurement of O1, . . . ,On on the n-component system results
in a random vector (j′1, . . . , j

′
n) ∈ Jn of measurement values, and forces the

system into the pure state ej′1
⊗ · · · ⊗ ej′n . Let On denote the joint measure-

ment (O1, . . . ,On). Periodic measurement of On results in a Markov chain of
values in Jn, since On is a complete observable of the n-component system.
The one-step transition kernel for this Markov chain is

K[(φn)t,On, T ](j, j′) = Tr(Pej1
⊗···⊗ejn

φT (Pej′1
⊗···⊗ej′n

)). (16)

by formula (15).

Corollary 3.7. Let (φn)t and On be as above for each n, and suppose that
{(φn)t} propagates quantum molecular chaos. Then, for each T ≥ 0, the
sequence of Markov transitions {K[(φn)t,On, T ]}n∈N propagates chaos in the
classical sense.

Proof. Consider the special case of Proposition 3.6 where

D(j) = X(j) = |ej〉〈ej|.

In that case the sequence {Ln} of Markov transitions

Ln((j1, . . . , jn), (j′1, . . . , j
′
n)) = Tr

[
(Qj1,...,jn)φn(Qj′1,...,j′n)

]
(17)
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with Qj1,...,jn = |ej1〉〈ej1| ⊗ · · · ⊗ |ejn〉〈ejn| propagates molecular chaos. But
comparing (17) to (16) and noting that

Pej1
⊗···⊗ejn

=
∣∣ej1 ⊗ · · · ⊗ ejn

〉〈
ej1 ⊗ · · · ⊗ ejn

∣∣
= |ej1〉〈ej1| ⊗ |ej2〉〈ej2| · · · ⊗ |ejn〉〈ejn| = Qj1,...,jn

shows that
Ln = K[(φn)t,On, T ].

�
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